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Abstract-The drying of a ~~-invite porous body in contact with the moving fluid has been studied 
theoretically. The equations of Luikov and Mikhailov for unsteady internal heat and mass transfer in 
the porous medium together with energy and flow equations of the fluid including the frictional heating 
have been solved. The fluid has been taken to be incompressible and the motion is assumed to have 
started impulsively. The effect of Eckert number on the temperature and the mass-transfer potential 
has been exhibited graphically for a given set of values of various non-dimensional parameters. 

NOMENCLATURE 

length co-ordinate perpendicular to the 
direction of flow [m]; 
temperature [“Cl ; 
moisture-transfer potential [“Ml; 
air velocity [m/s] ; 
thermal diffusivity coefficient [me/h]; 
diffusion coefficient of moisture in 
capillary porous body [ms/h] ; 
coefficient of moisture internal evapora- 
tion; 
specific heat of evaporation [kcal/kg]; 
thermal gradient coefficient [l/degC]; 
= &/cm Soret coefficient [“M/degC]; 
specific isothermal mass capacity of 
moist body [kg/kg “Ml; 
specific heat capacity of moist body 
Ik=4(kg de&2 ; 
~ss-transfer coefficient 
Ekg/(m2 h “WI ; 
dynamic viscosity [kg/(m h)]; 
kinematic viscosity [ms/h] ; 
time [h]; 
thermal conductivity [kcal/(m h degC)]; 
= %cmy moisture conductivity 
[kg/(m h “WI ; 
the density of dry porous medium 
k/m31 ; 
an arbitrary depth of the porous body 
[ml; 

LU = ams/aes Luikov number; 
KO = pc,2(@20 - 4_4/~,2(t10--r20) Kossovich 

number; 
Pfl = S&o - ~2~)/(~~* - 0,) Posnov number; 
Bim = ailed Biot number for mass trans- 

fer; 
Pr = v&l Prandtl number; 
E = U~/C&O - t20) Eckert number; 
Fo = up&2 Fourier number; 
V = u/v0 dimensionless velocity; 
T = (t - tzo)/(tlo - tzo) dimensionless tem- 

perature; 
e = (d20 - #)/(S20 - 0,) dimensionless mass- 

transfer potential; 
0 P7 equilibrium value of mass-transfer 

potential; 
X = x/A dimensionIess length co-ordinate; 
k = ~11~2; 
Kofx), modified Bessel function of second kind 

and of order zero. 

Subscripts 
1, fluid; 
2, porous body; 
0, initial value. 

1. INTRODUCTION 

LWKOV and Mikhailov [I] have studied a number 
of problems of drying of capillary-porous bodies 
where the set of coupled equations of internal 
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heat and mass transfer have been solved with 
various boundary and initial conditions. The 
most general boundary conditions are those of 
the third kind which take into account the 
thermo-diffusion and the heat loss due to 
evaporation of the liquid moisture at the surface 
of the body. Lebedev [2] has discussed some 
empirical formulae for heat and mass transfer 
in the drying of a moist porous body in air. 

In this paper we discuss the problem of drying 
of a capillary-porous body of infinite extent by 
means of air flowing on its surface. In all the 
cases of drying hitherto discussed the surround- 
ing medium is taken to be at a constant tempera- 
ture or at a temperature given as a function of 
time. In general, the flowand the energyequations 
for the moving fluid are coupled through non- 
linear convective terms and no analytical solu- 
tion to the heat transfer in a fluid can be obtained, 
In one-dimensional flow, however, the convective 
terms vanish identically and the velocity satisfies 
a diffusion type of equation. ln this case the flow 
equation can be solved independently and the 
solution can be substituted in the energy equation 
to obtain the temperature time history in the 
solid and the fluid. In this case the solid and the 
fluid regions can be treated as a composite 
medium satisfying the continuity relations at the 
interface. In the problem discussed here the 
porous medium is supposed to be dried at its 
surface by air (considered as incompressible 
fluid) moving with initial velocity ~0. At the 
surface we consider the boundary conditions of 
continuity of temperature and of heat flux. As 
for the boundary conditions of mass transfer 
we consider the interface to be a free surface 
and assume that the body is in contact with a 
surrounding medium with a different mass- 
transfer potential which is constant. The 
equations of internal heat and mass transfer 
(including the cross effects) have therefore been 
solved along with the unsteady flow and energy 
equations of the fluid. 

For a particular case, numerical estimates of 
the heat- and mass-transfer potentials at the 
surface of the porous body for various values of 
Eckert numbers and the variation of these 
potentials with the Fourier number and non- 
dimensional distance inside the body have been 
graphically exhibited. 

2. THE PROBLEM 

Consider a semi-infinite porous body (x < 0) 
initially at a temperature t20 and moisture trans- 
fer potential &a in contact with a fluid occupying 
the space x > 0. The fluid (air} is initially at a 
temperature tlO, and it suddenly starts moving 
with a velocity ug. Assuming that moisture 
transfer at the interface follows the convective 
transfer law and the continuity conditions of 
temperature and heat flux hold, determine the 
temperature and mass-transfer potential in the 
porous body and the temperature in the moving 
fluid at any time. 

For the solution of the above problem we 
consider the following system of equations and 
boundary conditions. Equations of internal heat 
and mass transfer in the porous medium : 

as -- = aT a 2 a”tz + q ax2 
(qx m z/c 2) !E2 q aT (1) 

ae2 a262 aetz - = am2 a,z + Urn2 & - a7 ax2 

N<O, T>O 

Flow and energy equations of the fluid : 

&J a2V -_=p--- 
a7 ax2 (3) 

(4) 

x>o, T>O 

Initial conditions : 

t2 = f20 
I 

XC0 6) 
02 = 020 (6) 

t1 = ho 
v = Yo 1 x> 0 (7) 

(8) 

Boundary conditions at x = 0: 
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ae2 at2 3. SOLUTION OF THE PROBLEM 
h2 z + ~~~8, ;j-, + am2(e2 - 0,) = 0 (11) Let the Laplace transform of a function 

v=o (12) 
cp(X, Fo) be defined as 

The boundary condition (11) is the usual mass- 
rjj(X, P) = I sp( X, Fo) exp [ - pFo] dFo (25) 

0 
balance equation,* while equation (10) is the 
energy-balance equation at the interface where 

Multiplying the above equations (13), (14) and 

the heat loss due to evaporation has been taken 
also the boundary conditions (21)-(23) by 

into account. 
exp [ - pFo] and integrating [with the initial 

The above equations can be represented in the 
conditions (17), (18)] we get 

non-dimensional form as below: d2Tg 
pT2 = dX2 - cKopd2 (26) 

aT2 8sTs ae2 _ = - - &- 
aF0 ax2 ~Fo (13) ds& dzTz 

$2 = Lu dX2 - LuPn dX2 (27) 

(14) TI = T2 (28) 

X < 0, Fo > 0 dl”z 
TX + (1 - l ) LuKoBi, (1 - 0s) = k hx dT1 (29) 

8V 82V 
SF0 
- = a*PrE2 (15) d& 

-dx+Pn;;+ Bi,n(l - Bz) = 0 (30) 

aT1 ST1 
-=-_ 
8Fo 

rz+Pr.E.a (16) 
The solution of (15) subject to the initial con- 
dition (20) and boundary condition (24) is well- 

X > 0, Fo > 0 known and is given as 

Initial conditions: V = erf 
X 

(39 

2-2 = 0 
2y’(Pr. a. 

I x<o (17) 
I 1 Fo) 

where 
e2 = 0 UfQ 

X 
XI2v’U’r. a. Fo) 

Tl = 1 
v= 1 1 

(19) erf 
x>o 21/(Pr. I a. Fo) 

= 2/d?r 
s 

(20) 0 

Boundary conditions at X = 0: 
exp b- 521 dt (32) 

Substituting V from (31) into equation (16) and 
TI = T2 (21) taking the Laplace transform we get 

8TZ 
ax + (I - +~UKOB~~ (1 - e2) = kC$ (22) 

d2Tl 
m2 - pla TI 

= 
82) = 0 (23) 

- l/a - 2H=a Ko [ j(~) X] (331 

v=o (24) 
The solution of simultaneous equations (26) and 
(27) is 

where the dimensionless temperature, mass- 
transfer potential, etc., have been defined in the 

TZ = AI exp PI Xdpl + A2 exp B2 Xdpl (34) 

nomenclature. 82 = - WKo MI (1 - R) exp WI XV’PI + 

A2 (1 - Ei) exp G92 -W~l3 

* See reference 1, p. 498. x < 0 (3.5) 

HAL-G. 
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where 

Satisfying the transformed boundary con- 
ditims (2Q-00) by (34)--(36) we get 

Bz(l 

[ 

-Pi) - Bl(1 - 83 + 

&? 

(43) 
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1 

I (45) 

r&l-, Fo) = f 

%{e& (*)exp[- &(t/a)hX 

+ aFoh2] x erfc 
[ 

- -+$& + hd(aF0) I} 
+ a&z exp [ - fll(y’a) h . X + aFoh2] 

I 

and x erfc - Y$&- f hl/(aFo) f F 

h 
$2 

=mFl (46) +rfc (2%) - exp[-&(t/a)h. X (51) 

where + aFoh2] x erfc 
c 

- 2% + hz/(aFo) 
iii 

& = & 82U - m - I%(1 - 83 - iV22 . a exp [ - ,&(da) h . X -I- aFoh2J 
da X0 

I 

x erfc - -&& -f- hd(aFo) 

+(b - BdPn + @1/32/~~~>@~ - 83 (47) 
1 

XC0 

M has two different vaIues [3] according as the 
Prandti number is less than or greater than 2, 
namely 

Ivll (1 - m 
@2(x, Fo) = - h ~ 

&O 

- exp [-- Pl(da) h . X 

- 81X -- + aFoh2] x erfc 22/Fo f hz/(aFo) 
c 

a. X2(1 - 83 

cKo exp [-- ,&(da) h . X 

+ aFoh2] x erfc 

Ml = +&pg 1 + d(l - 2i’Pr) 

d(2lPr) 1 
Pr > 2 (49) - exp [ - ,&(l/a) h . X -f- aFoh2] 

1 x erfc 
C 

-/92.x ...---- 
M2 = -d(2,pr _ 1j CW-~ Cz/(f+Ql 2y/Fo d( F )I} 

a o 

fV<2 (50) +%(I -@)exp[-/!2(2/u)h,X+ 

Applying the Laplace inversion theorem [4] to 
(37H39) 

aFoh2] x erfc $-$$ + hd(aFo) 1 . 

- (52) 
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Tl(X,FO) = I +F(erfc [I;;~] li 
O-40 

[ 

- exp [II, X + aFoh2] x erfc -_K.--_ 
22/W+) 

f hl/(fIFb) I> + a. N32 exp [h . X 
-t- uFoh2] . erfc 2*) + WWo) 1 

EPd ’ (53) 

+x- 

. 
erfc ( - 1/[Pr(Fo - E)] . x 

21/{af[Pr(Fo - 5) + 2K} 
) I df 

x>o J 
where the convolution theorem [5] has been 
applied to invert the last two terms of (39). 

4. NUMERICAL RESULTS AND DISCUSSION 

From the exact solution to the equations of 
internal heat and mass transfer in a porous body 
together with the flow and energy equations of 
the moisture removing fluid, taking into account 
the frictional heating, we can write down the 
temperature and moisture potentials in terms 
of the various non-dimensional parameters 

T2 = Tz(Lu, Ko, Bim, Pn, E, F5, a, k, Pr, E) 

82 = Bz(Lu, I(o, B&a, PFZ, c, Fo, a, k, Pr, E) 

For illustration we choose the foIlowing set of 
values for the non-dimensional parameters 

Lu = 0.2 Ko = 1.2 Pn = 0.5 Pr = 0.7 

Bim = 0.1 a = 40 k = 0.1. 

The corresponding potentials Tg and 0s are 
shown graphically in Figs. l-4. 

Figure 1 exhibits the values of the non- 
dimensional moisture transfer potential 62 
plotted against the non-dimensional porous 
body depth for various values of the Fourier 

FIG. 2. Effect of Eckett number on the value 82 at the 

FIG. 1. Variation of 8~ along porous body depth for 
various values of Fo. (E = 1, c = O-5, Ko = 1.2, Lu = 

0.2, Pn = 0.5, Pr = O-7, k = 0.1, a = 40, Bim = 0.1). 

porous surface. 
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FIG. 3, Variation of Ta along porous body depth for 
various values of Fo. 

FIG. 4. Effect of Eckert number on TZ at the porous body 
surface. 

number. The effect of the Eckert number 
E = Y:/C&O - fao) on ‘the drying process is 
exhibited in Fig. 2 where the difference in the 
values of 8s corresponding to a given Eckert 
number and that corresponding to zero Eckert 
number is plotted against Fo. Figures 3 and 4 
depict the values of non-dimensional temperature 
in the porous body for variation in X and Fo and 
the effect of the Eckert number on the tempera- 
ture of the porous surface respectively. It is seen 
from Fig. 2 that an increase in the Eckert 
number results in quicker drying though the 
steady state values of the moisture potential at 
the surface is inde~ndent of the Eckert number. 
The effect of frictional heating on the surface 
temperature seems to be more pronounced and is 
reflected even in the steady state values of 
temperature at the porous surface. It is observed 
(Fig. 3) that for the values of non-dimensional 
parameters chosen for the numerical example 
illustrated here the temperature of the porous 
surface rises only slightly above the initial 
temperature in the beginning but later the cool- 
ing due to moisture evaporation from the surface 
is dominant and the temperature falls down to a 
steady state value which is dependent on the 
Eckert number. The rise of temperature of the 
porous body surface above the initial value is 
greater for larger Eckert numbers. 
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R&urn&Le s6chage dun milieu poreux semi-infini en contact avec un fluide en mouvement a 6th 
&die theoriquement. Les equations de Luikov et Mikhailov pour le transport de chaleur et de masse 
transistoire 1 l’interieur du milieu poreux ont et6 resolues en memet emps que les equations de 
1’6coulement et de l’tnergie du fluide en tenant compte de l’khauffement du au frottement. Le Snide a 
et6 suppose incompressible et l’on a suppose que le mouve~nt a dcmarre brutalement. L’effet du 
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nombre d’Eckert sur la temperature et sur le potentiel de transport de masse a ete presente graphique- 
ment pour un ensemble donnd de valeurs de differents parametres sans dimensions. 

Zusannnenfassung-Die Trocknung eines halbunendlichen porosen Korpers der sich in Beriihrung 
mit einem bewegten Medium befindet wurde theoretisch untersucht. Die Gleichungen von Luikov 
und Mikhaliov ftir instationlren inneren Warme- und Stofftibergang im porosen Korper wurde 
zusammen mit den Energie- und Bewegungsgleichungen, die Reibungserwarmung einschliessen, 
gel&t. Das stromende Medium ist als inkompressibel angenommen und die Bewegung sol1 plotzlich 
begonnen haben. Der EinRuss der Bckertzahl auf die Temperatur und das Stoffiibergangspotential 

ist ftir mehrere dimensionslose Parameter grafisch dargestellt. 

AnnoTaqrisr-IIpose~eno TeopernsecKoe rxccne~osanne cym~rr nony6ecKoHeuHoro no- 
pMCTOr0 TeJIa, HaXOHHmerOCH B KOHTaKTe C nBH?KymeiCFl CpeHOH. PemeHbJ ypaBH3HHR 
jTbIKOBa H MHxaZtnoBa AHB npOncCCa HcCTaHHOHapHOrO BHyTpeHHarO TenJIO-II MaCCOnepeHOCa 
B nOpHCTOt CpeHe COBMWTHO C ypaBHeHH3 3Hepl’HH II HBHIKeHHH HEMAKOCTH, BKJHOHaKHHHMH 
B ce6a HarpeB OT TpeHHH. IIpH aHaHH3e 6brno npH~nT0, YT~ wrnKocTb HecwrMaeMa H 9~0 
;4BHW?HHe Ha=iHHaeTCR HMHyJlbCMBHO. &IH AaHHOrO pnHa 3HaWHMH pa3nHWnX 633pa3MepHbIX 
napaMeTpon npeAcTasneHa rpa@rsecKaH 3aBHcHMocTb TeMnepaTypbr II noTeHHHaBa Macco- 

nepcHOCa OT KpHTepHR 3KKepTa. 


